B.A./B.Sc. $6^{\text {th }}$ Semester (Honours) Examination, 2021 (CBCS)
 Subject: Mathematics
 Course: BMH6CC14
 (Ring theory and linear Algebra-II)

Time: 3 Hours
Full Marks: 60

The figures in the margin indicate full marks.
 Candidates are required to write their answers in their own words as far as practicable.
 [Notation and Symbols have their usual meaning]

1. Answer any six questions:
 $6 \times 5=30$

(a) Show that the ring $R=\{m / n: m, n$ are integers and n is odd $\}$ is a principal ideal domain.
(b) Determine ' a ' such that the polynomial $a x^{2}-4 x+8$ can be expressedas product of irreducible elements in $\mathbb{Q}[x]$.
(c) Is $f(x)=x^{4}-2$ irreducible over the ring $Z[i]$ of Gaussian integers? Support your answer.
(d) Let $S=\{(1,0, i),(1,2,1)\}$ be a subset of \mathbb{C}^{3}. Compute S^{\perp}.
(e) Let \mathcal{P}_{2} be the real inner product space consisting ofall polynomialsover \mathbb{R} of degree ≤ 2 with respect to the inner product, $\langle f, g\rangle:=\int_{0}^{1} f(t) g(t) d t$. Deduce an orthonormal basis of \mathcal{P}_{2} with respect to given basis $\left\{1, t, t^{2}\right\}$.
(f) Let V be an inner product space and let W be a finite dimensional subspace of V. If $x \notin \mathrm{~W}$, prove that there exists $y \in W^{\perp}$ but $\langle x, y\rangle \neq 0$.
(g) If $f \in\left(\mathbb{R}^{2}\right)^{*}$ is defined by $f(x, y)=2 x+y$ and the linear transformation $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is given by $T(x, y)=(3 x+2 y, x)$, then compute $T^{t}(f)$, where $\left(\mathbb{R}^{2}\right)^{*}$ is dual of \mathbb{R}^{2} and T^{t}, the transpose operator of T.
(h) If W is a subspace of V and $x \notin W$, prove that there exists $f \in W^{0}$ such that $f(x) \neq$ 0 , where $W^{0}=\left\{f \in V^{*}: f(x)=0, \forall \mathrm{x} \in W\right\}$, annihilator of W.
2. Answer any three questions:

$$
10 \times 3=30
$$

(a) (i) Show that $\left.\mathbb{Z}[X] /<1+X^{2}\right\rangle \cong \mathbb{Z}[i]$, where $<1+x^{2}>$ is the ideal generated by $1+x^{2}$.
(ii) Prove that aunitary and upper triangular matrix must be a diagonal matrix.
(b) (i) Let $V=\mathbb{F}^{n}$ and let $A \in M_{n \times n}(\mathbb{F})$.Prove that $\langle x, A y\rangle=\left\langle A^{*} x, y\right\rangle$ for all $x, y \in V$, where A^{*} is adjoint of A.
(ii) Factorize $x^{p}-x$ into irreducible polynomials in $\mathbb{Z}_{p}[x]$.
(c) (i) Show that $f(x)=x^{2}+8 x-2$ is irreducible over \mathbb{Q}. Is it irreducible over \mathbb{R} ? Support your answer.
(ii) Give an example to show that in a UFD, R, the gcd of two elements a and b of R need not be expressible in the form of $\alpha a+\beta b, \alpha, \beta \in R$.
(d) (i) For subspaces W_{1} and W_{2} of a vector space V, prove that $W_{1}=W_{2}$ if and only if

$$
W_{1}^{0}=W_{2}^{0} .
$$

(ii) Suppose that W is a finite dimensional vector space over a field, and $T: V \rightarrow W$ is linear. Prove that $N\left(T^{t}\right)=(R(T))^{0}$, where $N\left(T^{t}\right), R(T)$ denotes respectively the kernel of T^{t} and range of T.
(e) (i) Let T be a linear operator on an inner product space V, and suppose that $\|T(x)\|=\|x\|$ for all $x \in V$. Prove that T is one-one.
(ii) Let $V=\mathbb{F}^{n}$ and let $A \in M_{n \times n}(\mathbb{F})$. Suppose that for some $B \in M_{n \times n}(\mathbb{F})$, we have
$\langle x, A x\rangle=\langle B x, y\rangle$ for all $x, y \in V$. Prove that $B=A^{*}$, where A^{*} is adjoint of A.

