B.A./B.Sc. 6th Semester (Honours) Examination, 2021 (CBCS) Subject: Mathematics Course: BMH6CC14 (Ring theory and linear Algebra-II)

Time:3 Hours

Full Marks: 60

The figures in the margin indicate full marks.

Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning]

1. A	nswer	any six questions: $6 \times 5 = 30$	
(a)		Show that the ring $R = \{m/n: m, n \text{ are integers } and n \text{ is odd}\}$ is a principal ideal domain.	[5]
(b)		Determine 'a' such that the polynomial $ax^2 - 4x + 8$ can be expressed as product of irreducible elements in $\mathbb{Q}[x]$.	[5]
(c)		Is $f(x) = x^4 - 2$ irreducible over the ring $Z[i]$ of Gaussian integers? Support your answer.	[5]
(d)		Let $S = \{(1,0,i), (1,2,1)\}$ be a subset of \mathbb{C}^3 . Compute S^{\perp} .	[5]
(e)		Let \mathcal{P}_2 be the real inner product space consisting of all polynomials over \mathbb{R} of degree	[5]
		≤ 2 with respect to the inner product, $\langle f, g \rangle := \int_0^1 f(t)g(t)dt$. Deduce an	
(f)		orthonormal basis of \mathcal{P}_2 with respect to given basis $\{1, t, t^2\}$. Let V be an inner product space and let W be a finite dimensional subspace of V. If $x \notin W$, prove that there exists $y \in W^{\perp}$ but $\langle x, y \rangle \neq 0$.	[5]
(g)		If $f \in (\mathbb{R}^2)^*$ is defined by $f(x, y) = 2x + y$ and the linear transformation $T:\mathbb{R}^2 \to \mathbb{R}^2$ is given by $T(x, y) = (3x + 2y, x)$, then compute $T^t(f)$, where $(\mathbb{R}^2)^*$ is dual of \mathbb{R}^2 and T^t , the transpose operator of T .	[5]
(h)		If <i>W</i> is a subspace of <i>V</i> and $x \notin W$, prove that there exists $f \in W^0$ such that $f(x) \neq 0$, where $W^0 = \{f \in V^* : f(x) = 0, \forall x \in W\}$, annihilator of <i>W</i> .	[5]
2 . /	Answe	r any three questions: $10 \times 3 = 30$	
(a)	(i)	Show that $\mathbb{Z}[X]/\langle 1 + X^2 \rangle \cong \mathbb{Z}[i]$, where $\langle 1 + x^2 \rangle$ is the ideal generated by $1 + x^2$.	[5]
	(ii)	Prove that aunitary and upper triangular matrix must be a diagonal matrix.	[5]
(b)	(i)	Let $V = \mathbb{F}^n$ and let $A \in M_{n \times n}(\mathbb{F})$. Prove that $\langle x, Ay \rangle = \langle A^*x, y \rangle$ for all $x, y \in V$, where A^* is adjoint of A .	[5]
	(ii)	Factorize $x^p - x$ into irreducible polynomials in $\mathbb{Z}_p[x]$.	[5]
(c)	(i)	Show that $f(x) = x^2 + 8x - 2$ is irreducible over \mathbb{Q} . Is it irreducible over \mathbb{R} ? Support your answer.	[5]
	(ii)	Give an example to show that in a UFD, <i>R</i> ,the gcd of two elements <i>a</i> and <i>b</i> of <i>R</i> need not be expressible in the form of $\alpha a + \beta b$, $\alpha, \beta \in R$.	[5]
(d)	(i)	For subspaces W_1 and W_2 of a vector space V, prove that $W_1 = W_2$ if and only if	[5]

 $W_1^0 = W_2^0.$

- (ii) Suppose that W is a finite dimensional vector space over a field, and $T: V \to W$ is [3+2] linear. Prove that $N(T^t) = (R(T))^0$, where $N(T^t)$, R(T) denotes respectively the kernel of T^t and range of T.
- (e) (i) Let T be a linear operator on an inner product space V, and suppose that [5] || T(x) || = || x || for all $x \in V$. Prove that T is one-one.
 - (ii) Let $V = \mathbb{F}^n$ and let $A \in M_{n \times n}(\mathbb{F})$. Suppose that for some $B \in M_{n \times n}(\mathbb{F})$, we have [5] $\langle x, Ax \rangle = \langle Bx, y \rangle$ for all $x, y \in V$. Prove that $B = A^*$, where A^* is adjoint of A.